
Algorithmic Game Theory December 12, 2013

Lecture 8

Lecturer: Michal Feldman Scribe: Ophir Friedler, Yogev Vaknin, Jonathan Kaletchtein

1 Combinatorial auction

In the previous lecture we talked about the general case of combinatorial auctions where
we have n players and m different unsplittable products, and an allocation space, which is
a set of vectors s1, ..., sn where si is the set of products that player i gets, which implies
si ∩ sj = φ for the allocation to be valid.

Throughout our analysis we are going to make two standard assumptions about the valua-
tion functions of players:

S ⊆ T ⇒ vi(S) ≤ vi(T) monotonicity (1)

vi(φ) = 0 normalization (2)

Examples for combinatorial auctions are financial auctions like the stock market, or elec-
tromagnetic frequencies, where M is expected to be very large, therefore any algorithm we
would suggest would have to be at least poly(M).

Throughout the rest of the lecture we are going to discuss three main issues: representation,
complexity of computation, and incentives:

Representation: Every player has a valuation function vi : 2M → R+ where M might be
very large, how can we represent each player’s valuation?

Complexity: Can we efficiently find an allocation that maximizes the social welfare∑n
i=1 vi(s)?

Incentives: How do we build a truthful mechanism?

Notice that another assumption we have made here is that each player knows its valuation
function without any computation. Let us consider a few examples:

Example 1 Additive valuations: Each player i values a set S by the sum of the values of
its elements: ∀S, vi(S) =

∑
j∈S vi(j).

Representation: Each player is able to pass her valuation by passing m numbers, therefore
representation is not an issue.

8-1

Complexity: In this case social welfare is maximized when each product is be given to the
player that values it the most. This allocation is simple and can be computed efficiently.

Incentives: Perform second price auctions on each of the products separately, we have
seen that this implies a truthful mechanism.

Definition 1 A sub additive function v is a function that satisfies:

v(S + T) ≤ v(S) + v(T)

Example 2 An extreme case of substitutional products (the valuation functions are sub-
additive function):

Unit demand bidders: For every agent i and product j, set a value for vi({j}). For any set
that is not a singleton:

vi(S) = maxj∈Svi({j}) (3)

Representation: Again each player is able to pass her valuation by passing m numbers,
therefore representation is not an issue.

Complexity: The problem is equivalent to finding a maximal weighted matching between
people and products, which has a polynomial time solution, therefore finding an allocation
that maximizes social welfare can be done efficiently.

Incentives:In previous lectures we have seen that calculating payments for the VCG mech-
anism is done by finding an allocation that maximizes social welfare twice, and this can be
done efficiently. Therefore VCG can be run efficiently, and VCG is a truthful mechanism.

Definition 2 Given a valuation function v, complementary sets products S and T are such
that:

v(S + T) > v(S) + v(T)

Example 3 An extreme case of complementary valuation (Single minded bidders)
Each agent i values a package S∗i to v∗i , hence:
vi(S) = v∗i if S∗i ⊆ S else 0

This is very similar to the case where players have single parameter as private information,
however in this case the private information of a player is (vi, S

∗
i), which is more private

information than one parameter (therefore, this is NOT a single parameter case).

Representation: Each player is able to pass her valuation by passing 2m numbers, there-
fore representation is not an issue.

We are now going to discuss the issues of complexity and incentives.

8-2

Complexity:

Claim 3 Maximizing social welfare for single minded bidders is NP −Hard

Proof: Let us see a reduction from Max− IS to our problem:
Given a graph G = (V,E), define the auction where V is the set of players, and E is the set
of products. The valuation of each player i is v∗i = 1, and the package S∗i = {e ∈ E : i ∈ e}
then the set of “winners” satisfy Si ∩Sj = ∅ if and only if the set of corresponding nodes is
an independent set in the graph.
Therefore the induced social welfare is exactly the number of nodes in the independent set.
⇒ |IS| ≥ k ⇔ SW ≥ k

It is known that this problem is hard to approximate to a factor of ∀ε : n1−ε when n is the
number of nodes. Since in our case |IS| = SW the reduction preserves approximations,

therefore our problem is hard to approximate up to a factor of m
1
2
−ε.

Claim 4 There exist a polynomial mechanism that provides an approximation of
√
m.

This is the best approximation the original IS problem, therefore this is the best approxi-
mation we can hope for.

Case 1: private case that can be solved in polynomial time: Single minded bidders
The m products are m consecutive months each player wants to rent an apartment in some
interval.

Claim 5 It’s possible to find an optimal Social Welfare in polynomial time.

Proof: Via dynamic programming:
k = The number of months from the beginning

v(k) = max{v(k − 1),maxi(vi[j . . . k] + v(j − 1))} (4)

on each step we can take player that it’s interval ends in k, we will choose the player that
maximizes vi[j . . . k] + v(j − 1).

Case 2: seconde private case that can be solved in polynomial time: for each player |S∗i | = 2
For each i, |S∗i | = 2. In this case we can represent each agent is an edge, and each product is
a node, and vi is the weight of the edge. This case is equivalent to max-weighted-matching,
and therefore it can be solved in polynomial time.

A general mechanism:

8-3

Sort the agents by:
V ∗1√
|S∗1 |

≥ . . . ≥ V ∗n√
|S∗n|

(5)

The algorithm returns the set of winners W :

Algorithm 1 Allocation algorithm

w ← φ
for i = 1...n do

if S∗i ∩ (∪j∈wS∗j) = φ then
w ← w ∪ {i}

end if
end for

Payments: Each player that wins pays the smallest value v∗i he could say and still win.
Formally, to win, a player needs:

v∗i√
|S∗i |

≥
v∗j√
|S∗j |

(6)

When j is the first player s.t
Sj ∩ Si 6= ∅

But:

∀k ∈W,k < j : Sj ∩ Sk = ∅

that is:

pi = v∗j

√
|S∗i |√
|S∗j |

Two important attributes we will use:

• Monotonicity:

(vi, Si) wins⇒ ∀v′
i ≥ vi, S

′
i ⊆ Si :

(
v
′
i, S

′
i

)
wins (7)

• The payment is the critical value

8-4

Both attributes are true in our mechanism.

Claim 3 The mechanism is truthful

Proof:
Let (vi, Si) be the real values, we will prove bidding

(
v
′
i, S

′
i

)
isn’t profitable.

For lying to be profitable, it must be that Si ⊆ S
′
i .

(
v
′
i, S

′
i

)
<monotonocityi

(
v
′
i, Si

)
<

(∗)
i (vi, Si) (8)

(∗) :

If
(
v
′
i, Si

)
doesn’t win then the claim is trivial because if you lose the profit is 0, and in

that case you can only improve.
Else, there are two possibilities:

1. If (vi, Si) wins as well, then the payment is the same.

2. If (vi, Si) doesn’t win, then the new payment is greater than vi, but then the utility
from winning is negative �

Claim 4 The mechanism gives a
√
m approximation

Proof:
We need to prove that:

1√
m

∑
i∈OPT

vi ≤
∑
i∈W

vi (9)

When:

W = {i|player i wins in our algorithm}

OPT = {i|player i wins when social wellfare is maxemized}

Denote OPTi to be the set of players from OPT who didn’t win because of player i .
Formally:

OPTi =
{
j ∈ OPT, j ≥ i|S∗i ∩ S∗j 6= ∅

}
(10)

Then:
OPT ⊆

⋃
i∈W

OPTi

8-5

It is enough to prove that

∀i ∈W :
∑

j∈OPTi

v∗j ≤
√
m ∗ v∗i (11)

Proof: ∀j ∈ OPTi :

v∗j ≤
vi
√
|S∗j |√
|S∗i |

(12)

This is true because OPTi are the set of players who didn’t win because of i and therefore
j was after i in the sorting.
If we sum ∀j ∈ OPTi we will get:

∑
j∈OPTi

v∗j ≤
∑

j∈OPTi

vi
√
|S∗j |√
|S∗i |

⇔ (13)

∑
j∈OPTi

v∗j ≤
vi√
|S∗i |

∑
j∈OPTi

√
|S∗j |

Using the Cauchy-Schwartz inequality, and the fact that the size of the vector (1, 1..., 1) is
at most |S∗i | :

∑
j∈OPTi

√
|S∗j | = (1, 1..., 1) · (

√
|S∗1 |, ...,

√
|S∗t |) ≤

√
|S∗i |

√√√√ t∑
i=1

|S∗i | (14)

≤(∗)
√
|S∗i |
√
m

(∗): If i ∈ OPTi, a factor of
√

2 is added.
To remove it, we need to redefine OPTi s.t i /∈ OPTi and then

OPT ⊆
⋃
i∈W

OPTi ∪ {i : OPTi = ∅} (15)

Altogether: ∑
j∈OPTi

v∗j ≤
v∗i
|
√
|S∗i |
∗
√
|S∗i | ∗

√
m = v∗i

√
m (16)

�
Conclusion: The mechanism presented gives a

√
m approximation

and is truthful, and therefore the demand to truthfulness doesn’t weaken
the approximation ability.

8-6

