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1 Prior-free Mechanisms

Let there be digital goods with the values v = (v1, ..., vn) where vi is the value of player
i for a unit of the digital goods being auctioned. We want to maximize the revenue. We
will compare the revenue of our mechanism to the optimal revenue we can get from the
envy-free mechanism.

We define the following order on the player valuations v(1) ≥ v(2) ≥ ... ≥ v(n), and the Envy
Free Optimal result EFO = max1≤i≤niv(i). There is no mechanism that gives a sub-linear
approximation with respect to EFO(v).

We define the following EFO(2)(v) = maxi≥2iv(i). We would like to design a truthful

mechanism that gives a good approximation with respect to EFO(2), for every valuation
vector −→v . Assume we want to get revenue R from every input −→v for EFO(v) ≥ R. A
mechanism designed to provide a target revenue R is called a Profit Extractor.

The Mechanism: Given a target R and a profile −→v , find the largest k such that v(k) ≥
R/k, and sell to the k players with price R/k each (if k exists). If k doesn’t exist, no one
gets anything.

v(1) ≥ v(2) ≥ ... ≥ v(k)︸ ︷︷ ︸
k

≥ ... ≥ v(n)

R
k k = R

Theorem 1 This mechanism is truthful.

Proof: Note that the price can only increase in each iteration. If EFO(v) ≥ R then
R ≤ EFO(v) = kv(k). We get R/k ≤ v(k). The mechanism will find some k that gives
us R. If EFO(v) < R then there’s no k such that R/k ≤ r(k), therefore the profit of the
mechanism will be 0.
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Random Sampling Profit Extraction Auction

1. Partition the players into two groups S′,S′′ by repeatedly flipping a fair coin.

2. Compute R′ = EFO(vS′) and R′′ = EFO(vS′′).

3. Apply the profit extractor to S′ with target R′′ and onto S′′ with target R′.

This mechanism is truthful and its profit is min(R′, R′′).

Theorem 2 The random mechanism is a 4-approximation to EFO(2).

To prove Theorem 2 we first show Lemma 3:

Lemma 3 Flipping k ≥ 2 fair coins gives E[min(#heads,#tails)] ≥ k
4 .

Proof of Lemma 3: Let Mi be a random variable for min{#heads,#tails} after a fair
coin is tossed i times.

E[M1] = 0

E[M2] = 1
2 · 0 + 1

2 · 1 = 1
2

E[M3] = 1
4 · 0 + 3

4 · 1 = 3
4

We show a general bound on E[Mi] for i > 3:
Let Xi be a random variable representing the difference of min{#heads,#tails} between
two consecutive tosses:

Xi = Mi −Mi−1

We calculate E[Xi]:
Case 1: i is even

E[Xi] =
1

2
· 0 +

1

2
· 1 =

1

2

Case 2: i is odd (E[Xi] ≥ 0)
For i = 3:

E[M2] =
1

2

E[M3] =
3

4

⇒ E[X3] = 3
4 −

1
2 = 1

4
So we get:

E[Mk] =
k∑

i=1

E[Xi] ≥ 0 +
1

2
+

1

4
+

1

2
+ 0 +

1

2
+ ... =

1

4
+

⌊
k
2

⌋
2
≥ k

4
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Proof of Theorem 2: Let us assume that EFO(2) sells to k ≥ 2 buyers at price p.
Then: Rev[EFO(2)(v)] = k · p
Of the k buyers, let k′ be the number of buyers in S′ and k′′ be the number of buyers in S′′.
We know that: R′ ≥ k′ · p and R′′ ≥ k′′ · p.
So, we get that:

Rev[our mechanism]

Rev[EFO(2)(v)]
=
E[min{R′, R′′}]

k · p
≥ E[min{k′ · p, k′′ · p}]

k · p
=
E[min{k′, k′′}]

k
≥ 1

4

where the final inequality is derived from the lemma.

2 Equilibrium Prices

We are given m items and n buyers.
How should we determine the prices of the items?
Each buyer i has a valuation function vi,

vi(S) ∈ R+ ∀S ⊆ [m]

Standard assumptions:
normalization: vi(φ) = 0
monotony: vi(S) ≤ vi(T )∀S ⊆ T

Definition 4 Given a vector p = (p1, ..., pn) of item prices, we define the utility for buyer
i on set S as:

ui(S) = vi(S)−
∑
j∈S

pj

3 Walrasian Equilibrium

Our goal is to maximize the social welfare SW =
∑

i vi(Si), with the given prices
p = (p1, p2, ..., pn) and an allocation S1, S2, ..., Sn where the following holds:

1. Each player i receives a set of products Si in his demand set (collection of all sets that
maximize the utility).

2. For every product that is not allocated j /∈
⋃

i∈N , the price pj = 0.
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Configuration LP

Given a random variable Xi,S =

{
1, S → i

0, otherwise

max =
∑

i∈N,S⊆M
Xi,Svi(S)

s.t.: ∑
i∈N,Si,j∈S

Xi,S ≤ 1,∀j ∈M

∑
S⊆M

Xi,S ≤ 1, ∀i ∈ N

Xi,S ∈ {0, 1} ∀i ∈ N, S ⊆M

Problems:

• The number of players is exponential.

• This program is an Integer Program.

We will do Linear Programming Relaxation, Xi,S .

Theorem 5 If there exists a Walrasian Equilibrium WE then it maximizes the social wel-
fare. Moreover, it maximizes the SW even over the fractional solutions.

Proof: If (p∗1, ..., p
∗
m) and (S∗1 , ..., S

∗
n) is a WE, then for all the feasible LPR solutions

(including fractional)
{
X∗i,S

}
i,S

, it holds that:

n∑
i=1

vi(S
∗
i )︸ ︷︷ ︸

SW of WE

≥
∑

i∈N,S⊆M
X∗i,Svi(S)︸ ︷︷ ︸

SW of the feasible fractional solution

For each i, S

vi(S
∗
i )−

∑
j∈S∗i

p∗j︸ ︷︷ ︸
ui(S∗i )

≥ vi(S)−
∑
j∈S

p∗j︸ ︷︷ ︸
vi(S)
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ui(S
∗
i ) ≥ ui(S) ∀S, in every feasible solution ∀i

∑
S X

∗
i,S ≤ 1

vi(S)−
∑
j∈S

∑
p∗j ≥

∑
S

X∗i,S [vi(S)−
∑
j∈S

p∗j ]

⇒ vi(S
∗
i )−

∑
j∈S∗i

p∗j ≥
∑
S

Xi,S [vi(S)−
∑
j∈S

p∗j ] =
∑
S

X∗i,Svi(S)−
∑
S

X∗i,Sp
∗
j

Now, sum over all players i ∈ N :

∑
i∈N

vi(S
∗
i )−

∑
i∈N

∑
j∈S∗i

p∗j ≥
∑

i∈N,S⊆M
X∗i,Svi(S)−

∑
i∈N,S⊆M

X∗i,Sp
∗
j

It remains to show that ∑
i∈N,j∈S

p∗i ≥
∑

i∈N,S⊆M
X∗i,Sp

∗
j

We get this by
∑

i∈N,j∈S
p∗i =

∑
j∈M

p∗j and
∑

i∈N,S⊆M
X∗i,Sp

∗
j ≤

∑
j∈M

p∗j .

Theorem 6 [Second Welfare Theorem] If there exists an optimal integral solution to a
Cofiguration LPR then there exists a Walrasian Equilibrium and it gives us the allocation
for the solution.

From Theorem 6 the following characterization is implied:

Characterization 7 A Walrasian Equilibrium exists ⇐⇒ LPR has an optimal, integral
solution.

Example 8 We consider an example of a market with 2 players and 2 products. The
players have the following valuations:

v1(a) = v1(b) = v1(a, b) = 2

v2(a, b) = 3

from The First Welfare Theorem we get that in every WE, S1 = ∅ and S2 = {a, b}. We get
pa + pb ≤ 3⇒ ∃i∈{a,b}pi ≤ 1.5 but in this case player 1 will want product i for this price.

The optimal integral solution:

a b

1 2 2

2 3
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A fractional solution that satisfies all the constraints:

X1,a =
1

2

X1,b =
1

2

X2,{a,b} =
1

2

1
2v1(a) + 1

2v1(b) + 1
2v2({a, b}) = 1 + 1 + 11

2 = 31
2 .

We got 31
2 while in the optimal integral solution what we got was 3.

4 Gross Substitution Valuations Class

The Gross Substitution (GS) valuations class is a subset of the Sub Modular (SM) valuation
class, that we have encountered thus far.

GS ⊆ SM

A player’s valuation is GS: price vector −→p = (p1, ..., pn); a demand vector, e.g. Di =
{1, 2, 4, 17}; a non decreasing prices vector −→q = (q̈1, q̈2, q̈3, q̂4, ...).

Theorem 9 In every environment where all the players have a GS valuation, there always
exists a WE.

The proof for Theorem 9, as well as more details on the subject can be found in Chapter
11 of the book Algorithmic Game Theory, Cambridge University Press 2007.
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